Self-Aware Systems

AGI-11talk: Design Principles for a Safe and Beneficial AGI Infrastructure

Here are the slides from the talk:

Design Principles for a Safe and Beneficial AGI Infrastructure

Steve Omohundro, Ph.D., Omai Systems


Many believe we are on the verge of creating true AGIs and that these systems will be central to the future functioning of human society. These systems are likely to be integrated with 3 other emerging technologies: biotechnology, robotics, and nanotechnology. Together, these technologies have the potential to solve many of humanity’s perennial problems: disease, aging, war, poverty, transportation, pollution, etc. But they also introduce a host of new challenges. As AGI scientists, we are in a position to guide these technologies for the greatest human good. But what guidelines should we follow as we develop our systems?

This talk will describe the approach we are taking at Omai Systems to develop intelligent technologies in a controlled, safe, and positive way. We start by reviewing the challenging drives that arise in uncontrolled intentional systems: toward self-improvement, self-protection, avoidance of shutdown, self-reproduction, co-opting of resources, uncontrolled hardware construction, manipulation of human and economic systems, etc.

One conundrum is that to solve these problems in a general way, we probably will need the assistance of AGI systems. Our approach to solving this is to work in stages. We begin with a special class of systems designed and built to be intentionally limited in ways that prevent undesirable behaviors while still being capable of intelligent problem solving. Crucial to the approach is the use of formal methods to provide mathematical guarantees of desired properties. Desired safety properties include: running only on specified hardware, using only specified resources, reliably shutting down under specified conditions, limiting self-improvement in precise ways, etc.

The initial safe systems are intended to design a more powerful safe hardware and computing infrastructure. This is likely to include a global “immune system” for protection against accidents and malicious systems.  These systems are also meant to help create careful models of human values and to design utility functions for future systems that lead to positive human consequences. They are also intended to analyze the complex game-theoretic dynamics of AGI/human ecosystems and to design social contracts that lead to cooperative equilibria.