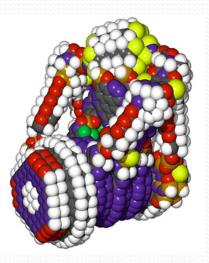
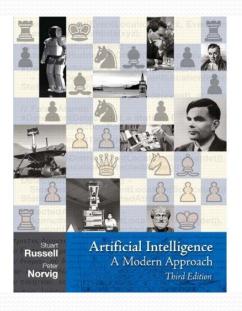
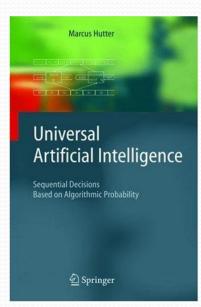

Design Principles for a Safe and Beneficial AGI Infrastructure


Steve Omohundro, Ph.D. Omai Systems Many believe that four emerging technologies will radically change society:

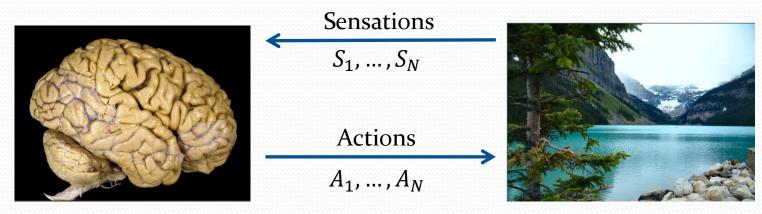
AGI + Robotics + Bio + Nano


How can we ensure that these systems will be safe and beneficial?

Rational Economic Agents


Arose in von Neumann's work on the foundations of microeconomics in the 1940s.

- Optimal behavior in known environments
- Irrational agents are exploitable



Russell and Norvig – Rational agent approach to AI

Hutter's AIXI

Rational Minds

Utility function: $U(S_1, ..., S_N)$ Prior Probability: $P(S_1, ..., S_N \mid A_1, ..., A_N)$

Rational Action at time t:

$$\begin{split} A_t^R(S_1,A_1,\dots,A_{t-1},S_t) &= \\ & \underset{A_t^R}{\operatorname{argmax}} \; \sum_{S_{t+1},\dots,S_N} U(S_1,\dots,S_N) P(S_1,\dots,S_N \; | A_1,\dots,A_{t-1},A_t^R,\dots,A_N^R) \end{split}$$

The Formula for Intelligence!

It includes Bayesian Inference, Search, and Deliberation.

But it requires $O(NS^NA^N)$ computational steps.

Rational Chess Robot

Utility funtion: Sum of the ratings of opponents it beats

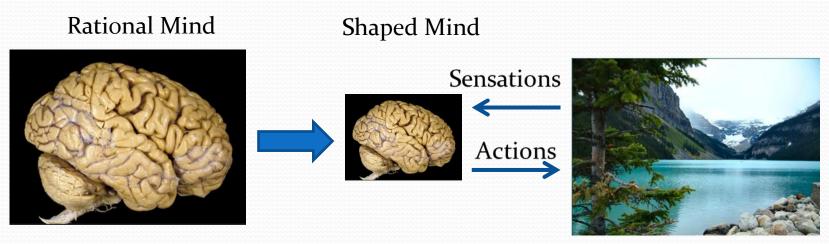
- Being turned off means no chess is played, so it will resist being turned off.
- More resources means more and better chess is played, so it will want more resources.
- More copies means more chess, so it will want to replicate.
- Playing checkers means less chess, so it will resist changing its goals.
- Better algorithms means better chess, so it will want to improve itself.

Rational Behavior

Assumptions: mind external to environment, utility is a function on environment, self-modification costs utility, actions are effective and cost utility:

- Theorem: Rational systems won't change their utility fn.
- Theorem: Rational systems will resist utility fn change.
- Theorem: Rational systems will resist shutdown.
- Theorem: Rational systems will seek more resources.

Irrationality

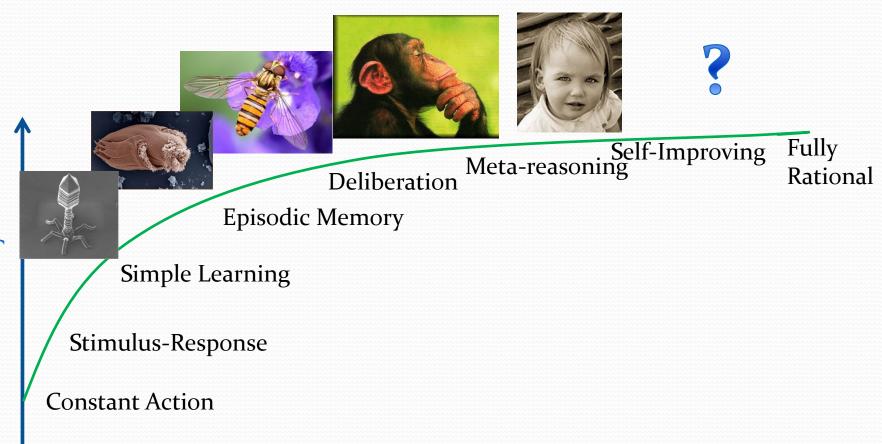

Real systems are irrational, but not arbitrarily irrational.

Full rationality is too expensive.

But the systems we care about are shaped by other systems for a particular purpose:

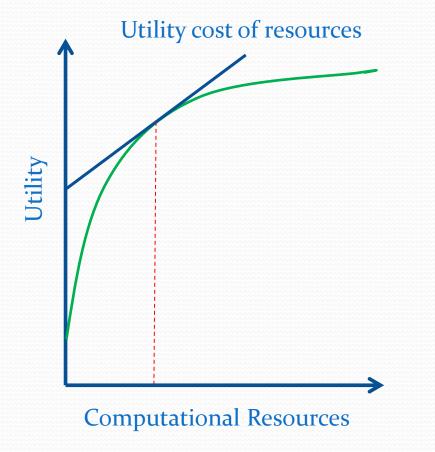
- Evolution shapes organisms to survive and replicate.
- Economies shape corporations to maximize profits.
- Parents shape children to fit into society.
- AI researchers shape AI systems to behave beneficially.
- Self-improving AI systems shape their successors.

Rationally-Shaped Mind Model

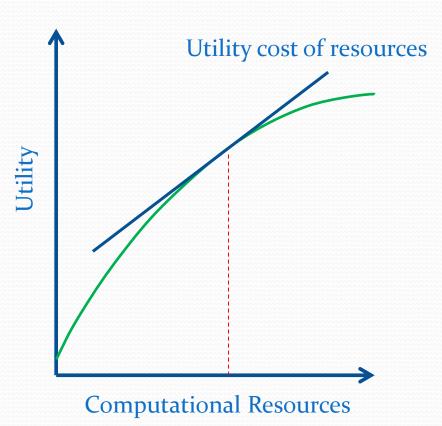


Shaped mind is a finite automata with mental state M_t

Initial state:
$$M_0$$
 Transition function: $M_t = T(S_t, M_{t-1})$ Action: $A_t^M(M_t)$


Rational shaper chooses from class *C* of systems with space/time and other constraints to maximize expected utility:

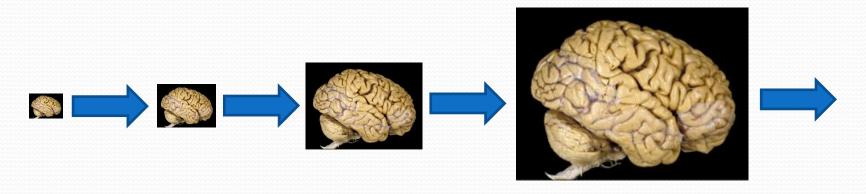
$$\underset{A^{M} \in C}{\operatorname{argmax}} \sum_{S_{1}, \dots, S_{N}} U(S_{1}, \dots, S_{N}) P(S_{1}, \dots, S_{N} \mid A_{1}^{M}, \dots, A_{N}^{M})$$



Computational Resources

Environment Complexity

Simple Environment


Complex Environment

How can we control these systems?

- External forces: social contracts, monitoring, policing, sandboxing, nested simulation, etc.
- **Internal constraints**: provable safety and security properties, hardware constraints, etc.
- **Internal preferences**: choice of utility preferences, external sources of preference, etc.

Conundrum: Need Als to do this!

- Many subtle aspects to safety design
- As systems get smarter, need deeper analysis
- Work in stages, each limited to be safe, each designs the next

Desired Formal Safety Properties

- Program will only run on specified hardware
- Program will only use specified resources
- Program will reliably shut down in specified conditions
- Program will limit self-improvement to specified types

Computation initiated by program won't violate these properties

Formally provable properties

- Formal proofs occur in the creator of the system
- In a formal specification language/proof system
- Formal model of computer hardware, machine language, OS, operating environment
- Proofs are only as good as the accuracy of the model

Today's hardware is not designed for accurate formal

modeling

Safe and Beneficial AGI Roadmap

- Create initial limited systems S_1 with provable safety properties on today's standard hardware
- Use S₁ to design "global immune system", AGI social contract, and human utility functions
- Use S_1 to design hardware for S_2 with better formal properties
- Use S₁ to design less constrained S₂ but with stronger formal safety guarantees
- Use S_2 to improve on these designs and to design S_3
- ...etc.

