Skip to content

March 14, 2009

The Science and Technology of Cooperation

by omohundro

On Friday, May 22, 2009, Steve Omohundro spoke at the Bay Area Future Salon at SAP in Palo Alto on:

The Science and Technology of Cooperation

Here’s a pdf file of the slides:

A new science of cooperation is arising out of recent research in biology and economics. Biology once focused on competitive concepts like “Survival of the Fittest” and “Selfish Genes”. More recent work has uncovered powerful forces that drive the evolution of increasing levels of cooperation. In the history of life, molecular hypercycles joined into prokaryotic cells which merged into eukaryotic cells which came together into multi-cellular organisms which formed hives, tribes, and countries. Many believe that a kind of “global brain” is currently emerging. Humanity’s success was due to cooperation on an unprecedented scale. And we could eliminate much waste and human suffering by cooperating even more effectively. Economics once focused on concepts like “Competitive Markets” but more recently has begun to study the interaction of cooperation and competition in complex networks of “co-opetition”. Cooperation between two entities can result if there are synergies in their goals, if they can avoid dysergies, or if one or both of them is compassionate toward the other. Each new level of organization creates structures that foster cooperation at lower levels. Human cooperation arises from Haidt’s 5 moral emotions and Kohlberg’s 6 stages of human moral development.

We can use these scientific insights to design new technologies and business structures that promote cooperation. “Cooperation Engineering” may be applied to both systems that mediate human interaction and to autonomous systems. Incentives and protocols can be designed so that it is in each individual’s interest to act cooperatively.Autonomous systems can be designed with cooperative goals and we can design cooperative social contracts for systems which weren’t necessarily built to be cooperative. To be effective, cooperative social contracts need to be self-stabilizing and self-enforcing. We discuss these criteria in several familiar situations. Cooperative incentive design will help ensure that the smart sensor networks, collaborative decision support, and smart service systems of the eco-cities of the future work together for the greater good.We finally consider cooperation betweenvery advanced intelligent systems. We show that an asymmetry from computational complexity theory provides a theoretical basis for constructing stable peaceful societies and ecosystems. We discuss a variety of computational techniques and pathways to that end.

Read more from Talks

Comments are closed.

%d bloggers like this: